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STRONG DISCONTINUITIES OF ELECTROMAGNETIC FIELD IN MAGNETICS* 

G.L. SEDOVA 

Various types of strong discontinuities of electromagnetic field parameters are in- 
vestigated. Propagation of such discontinuities in magnetics can be accompanied by 
thermal and mechanical effects. Dependence of the medium internal energy andofthe 

field of deformation is not taken into account in the selection of characteristic 
parameters of the field. It is shown that in a rotary discontinuity the medium 
entropy does not change. An expression determining the entropy increase at trans- 
ition through plane-parallel discontinuities is obtained. Discontinuitiesofelect- 

romagnetic fields in magnetics were previously considered in /l/ without allowance 

for thermal effects. 

1. Classification of strong discontinuities. Consider the propagation of a 

strong discontinuity in a magnetic whose induction B /magnetic flux density/ is assumed to be 

a function of the external magnetic field Hand entropy of the medium S, which is a feature 

of the majority of ferromagnetics /2/. For the characteristic values H -10' A/m and B - 10s 

T behind the discontinuity the velocity of the latter can be assume to be of the order of 

v-1O'L m/s, and the jump of stresses to be HBl(8n)=4~10skg/s2m. Under such conditions the 

change of the medium velocity behind the discontinuity is of the order of HB/(8~~~)-4.10-~ m/s, 

with the ensuing deformations of the order of HB!(Snp$) -4.1O-8. This shows that these deforma- 

tions are so small that they can be neglected. It is thus possible to assumethattheinternal 

energy Wof a unit volume of the medium and of the field is a function of entropy S, of the 

absolute values of magnetic induction B and module of the electric field strength H. The 

following equalities apply: 

aw aw 'i Hi aw .% eEi 
7=pT, TB=K, x~=~ (1.1) 

The dielectric constant e of the magnetic is assumed constant, hence it is possible to 

represent the internal energy Win the form W= W' (s,B) + 0Y2/(8n). 

When the velocity of medium is zero, the equation of energy conservation yields the re- 

lation that must be satisfied at a strong discontinuity 

&xH,,=U[w] (1.2) 

where n is the normal to the discontinuity surface. We assume that the vector of the normal 

coincides with the s axis, the discontinuity is plane, and U= v/c is the dimensionless veloc- 

ity of the discontinuity. Brackets denote the difference fcpl= 'p+ -q_ between the quantities 

ahead and behind the jump. The relationships 

[El, = U ]Blx n, IL&I = E [A',] = 0, [B,] = o (1.3) 
[HI, = - U [Dl x n, [HI, = U%[B] 

that link the shocks of electromagnetic field parameters /3/, follow from Maxwell equations. 

The last of equations of system (1.3) can be written as 

( U% -+- [+l)]B] = [+I B, 

which shows that when ]H/B]#O we have ]B] 1 B,_. Below, such discontinuities are called shock 
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waves. 
If [H/E] = IH,/B,] = C, then U2 = H_l(eB_), and discontinuities in which vector B changes its 

sign are possible. Among them can be found rotating discontinuities in which the absolute 

value of vector B does not change, as well as discontinuities in which the absolute value and 
direction of vector B change. Discontinuities of the latter type can be considered as joined 
rotational discontinuity and shock wave moving at the same velocity. 

(1.5) 

It is, thus, possible to assume that only two types of discontinuities exist, viz.plane- 
polarized shock waves with [B]]]B, and rotational discontinuities with WI= 0. 

Note that in the rotational discontinuity the normal component of Poynting's vector is 
not discontinuous. Indeed, the discontinuity relations (1.3) are not affectedbytheaddition 
to the electric field intensity of any contantvector E,. Hence by superposing on the initial 
electromagnetic field someconstantelectric field of intensity E. it is always possible to 
have the resulting vector E'= Ef E, normal to vector E and have its absolute value satisfy- 
ing the condition E’= HAEIAH. In that case the relation ]E'+ BE]= IE’I is valid. Taking 
into account that in the case of rotational discontinuity IH+ AHI= 1 HJ it 
show that 

(E'+ AE) x (H' + AA)], = E' X H In 

2. Entropy change in strong electromagnetic discontinuties. 
that on a rotational discontinuity the medium entropy does not change. This 
indicated above property of rotational discontinuities:.]E x A],= 0. Equation 
iant to the addition of any constant vector E,. The terms appearing on the 
are equal to each other by virtue of relations B,, ]B,] /(4n) = ueE,,, x ]E,]/(4$ at 
ity, hence in the case of rotational discontinuities we havetherelation 

IW (s, B, E)l = 0 

Since B'(s,P, E) in the considered here discontinuity is a function of s 

is possible to 

Weshallshow 
follows from the 
(1.2) is invar- 
left and right 
the discontinu- 

(2.1) 

and of absolute 
values of B and E, it can only change in consequence of entropy change,but (2.l)implies that 
W(s+)= W(s_) and, since the internal energy is a single-valued function of its argument, 
hence s+ = s_. 

Let us consider the entropy change in shock waves. A suitable selection of the coordin- 
ate system and of constant vector E, enables us to obtain lB= B,e, + B,e, and E = EA. Since 
the electromagnetic field vectors do not change their direction in shock waves, hence vector 
B lies in the plane XOZ with vector B coinciding with the y axis also after passing through 
the discontinuity. In such case formulas (1.2) and (1.3) may be reduced to the form 

[HI = U'e [B], [El = U [El 

2E_ IH] + 2H_ I.51 + 2 IHlIEl_= U8a [W* (s, B)l + 2UeE_[E] + UE [El’ 
(2.2) 

where, and subsequently, If, B,B denote the variable quantities H,,B,, E, . We shall con- 
sider w(s,)/B,~+B*,E) as a function of arguments s, B,E, and assume B, to be a constant para- 
meter. 

From Eqs. (2.2) we obtain the equation of the Hugoniot curve 

8~ fW1 = 2H_ [B] + IHllB] (2.3) 

where function W* = W*(S,B) defines the considered here model of medium. 
It is interesting to note that, if specific volume is formally substituted in Eq.(2.3) 

for E/(4x), and W* is taken as the internal energy of gas, then Hl(4n) will represent the gas 
pressure and Eq.(2.3) becomes the known in gasdynamics equation of the Hugoniot curve /4/. 

Let us consider the corollaries of Eq. (2.3) for some of the simplest but importantcases 
of definition of function W. If magnetization and heating of the medium proceed independent- 
ly, the internal energy can be decomposed in two terms 

Tv*=w**(.)+&fH(B)dB 
cl 
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The quantity W** then represents the energy which is transformed in the discontinuity in- 

to heat. 

Equation (2.3) with allowances for H*= 4n(dW/dB)* may be written as 

W+ W+ 

4n[W**(s)]= - 
s 
H(B)dB+T H+-H-(B+_B_) = H+ - H (B)}dB 

W- 8_ 

(2.4) 

where the riqht-hand side of the integral represents the difference between the areas of the 

trapezoid B_HE+H+ and the figure bounded by the curve H(B), the axis of abscissas, and the 
straight lines B =B_ and B = B, (Fig-l). 

Thus in the case when B+>B_ we have [W**(s)]>O, if the shaded area under the secantthat 

joints points (B-If_) and (B+H+) is greater than the shaded area above the secant, and when 

B+< B_ we have [w**(s)]<O. 

Sincetheinternal energy is an increasing function of entropy (increments of W** and A 

are related by the formula dW**= pTds), hence the condition [W**(s)]>0 becomes the conditionof 

entropy increase at the jump. The conditions of entropy increase and of evolution are in- 

dependent, since the slope of the tangent at points (B-H_) and (B+H+) can satisfy the evolution 

condition, i.e. lie on different sides of the secant, and the entropy can be negative (Fig.2) 

or conversely (Fig.1). 

H 

H+ 

H- 

When the discontinuity of all determining 

parameters at the jump is small, the change of 
internal energy at the jump can be represented 

in the form of expansion 

(W*l = PT- [s] + G [Bl +& PI + & [Bl” (2.5) 

where the coefficients i/p and n can be assumed 

Em 
constant. Substituting the expression for IW’I 
from (2.5) into (2.3) we obtain for the entropy 

Fig.1 Fig.2 jump at the discontinuity the expression 

pT_[sj=- $[E]" (2.6) 

Consider now the case when it is not possible to represent the internal energy W* by sep- 
arate terms dependent only on a single parameter either s or B. In this case the internal 

energy can be represented in the form 

W 

W*=W**(s)+&SH(B,s)dB 
0 

Let us assume that the medium entropy changes little at a strong discontinuity, i.e. that 

the remainder s+--s_ is small, then the change of internal energy at the jump can be expressed 

in the form 

w.+ w+ 

[ w.1 = “G Is] + & 1 
bl dB + 4n s 

1 
H P, 8-j dB = pT (0,) [s] + 4n s 

H (B, s-) dB (2.7) 

5=.s_ W- W- 

Formula (2.7) enables us to investigate the change of entropy at the jump, as was done 

in the case when it was possible to represent the internal energy W l by two independent terms, 

taking into account that now T depends also on B,. 
Note that Eq.(2.3) is a corollary of Maxwell's equations, the equation of energy of the 

form (1.2), and of the assumption that the dependence of density of energy Won the electric 

field is defined by the formula dW/dE= eEl(4n). On these assumptions Eq.(2.3) remains valid 

when W* is understood to be the remainder W-@/(8n), without assuming that W* depends only 

on s.and B . In particular this equation can be used for defining discontinuities in media 

in which the magnetization and demagnetization processes are accompanied by hysteresis. In 

the latter case it is necessary to take into account besides s and B, the dependence of W' 

on the magnetization vector M /5/. 
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